A Bound on the L_{∞}-Norm of L_{2}-Approximation by Splines in Terms of a Global Mesh Ratio

By Carl de Boor*

Abstract. Let $L_{k} f$ denote the least-squares approximation to $f \in \mathbf{L}_{1}$ by splines of order k with knot sequence $t=\left(t_{i}\right)_{1}^{n+k}$. In connection with their work on Galerkin's method for solving differential equations, Douglas, Dupont and Wahlbin have shown that the norm $\left\|L_{k}\right\|_{\infty}$ of L_{k} as a map on L_{∞} can be bounded as follows,

$$
\left\|L_{k}\right\|_{\infty} \leqslant \operatorname{const}_{k} M_{\mathbf{t}}
$$

with $M_{\mathbf{t}}$ a global mesh ratio, given by

$$
M_{\mathbf{t}}:=\max _{i} \Delta t_{i} / \min \left\{\Delta t_{i} \mid \Delta t_{i}>0\right\}
$$

Using their very nice idea together with some facts about B-splines, it is shown here that even

$$
\left\|L_{k}\right\|_{\infty} \leqslant \operatorname{const}_{k}\left(M_{\mathfrak{t}}^{(k}\right)^{1 / 2}
$$

with the smaller global mesh ratio $M_{\mathrm{t}}^{(k)}$ given by

$$
M_{t}^{(k)}:=\max _{i, j}\left(t_{i+k}-t_{i}\right) /\left(t_{j+k}-t_{j}\right) .
$$

A mesh independent bound for $\mathbf{L}_{\mathbf{2}}$-approximation by continuous piecewise polynomials is also given.

1. Introduction. This note is an addendum to the clever paper by Douglas, Dupont and Wahlbin [2] in which these authors bound the linear map of least-squares approximation by splines of order k with knot sequence $t:=\left(t_{i}\right)$, as a map on L_{∞}, in terms of the particular global mesh ratio

$$
M_{\mathfrak{t}}:=\max _{i} \Delta t_{i} / \min \left\{\Delta t_{i} \mid \Delta t_{i}>0\right\}
$$

Their argument is very elegant. But their result is puzzling in one aspect: The ratio $M_{\mathfrak{t}}$ is not a continuous function of t . If, e.g., t is uniform, hence $M_{\mathfrak{t}}=1$, and we now let $\mathbf{t} \rightarrow \mathbf{t}^{*}$ by letting just one knot approach its neighbor, leaving all other knots fixed, then

$$
\lim _{\mathfrak{t} \rightarrow \mathbf{t}^{*}} M_{\mathbf{t}}=\infty, \text { while } M_{\mathbf{t}^{*}}=2
$$

Correspondingly, their bound goes to infinity as $\mathbf{t} \rightarrow \mathbf{t}^{*}$, yet is again finite for the particular knot sequence \mathbf{t}^{*}.

This puzzling aspect is removed below. It is shown that (as asserted in a footnote to [1]) their very nice argument can be used to give a bound in terms of the smaller global mesh ratio

$$
\begin{equation*}
M_{\mathfrak{t}}^{(k)}:=\max _{i}\left(t_{i+k}-t_{i}\right) / \min _{i}\left(t_{i+k}-t_{i}\right) \tag{1}
\end{equation*}
$$

Received November 10, 1975
AMS (MOS) subject classifications (1970). Primary 41 A15.
Key words and phrases. Least-squares approximation by splines, error bounds.
*Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
which does depend continuously on \mathbf{t} in $\left\{\mathbf{t} \in \mathbf{R}^{n+k} \mid t_{i} \leqslant t_{i+1}, t_{i}<t_{i+k}\right.$, all $\left.i\right\}$.
2. Least-Squares Approximation by Splines of Order k. Let $t:=\left(t_{i}\right)_{1}^{n+k}$ be a nondecreasing sequence, with $t_{i}<t_{i+k}$, all i. A spline of order k with knot sequence t is, by definition, any function of the form

$$
\sum_{i=1}^{n} \alpha_{i} N_{i}
$$

with $\alpha \in \mathbf{R}^{n}$ and N_{i} the normalized B-spline of order k with knots t_{i}, \ldots, t_{i+k}, i.e.,

$$
N_{i}(t):=N_{i, k, \mathbf{t}}(t):=\left(t_{i+k}-t_{i}\right)\left[t_{i}, \ldots, t_{i+k}\right](\cdot-t)_{+}^{k-1}
$$

In words, for each $t, N_{i}(t)$ is $\left(t_{i+k}-t_{i}\right)$ times the k th divided difference at t_{i}, \ldots, t_{i+k} of $(s-t)_{+}^{k-1}$ as a function of s.

We denote the totality of all splines of order k with knot sequence \mathbf{t} by $\mathbf{S}_{k, \mathbf{t}}$. More detail about $\mathbf{S}_{k, t}$ is provided in [1] and its references.

Next, let L_{k} denote the linear projector on \mathbf{L}_{1} defined by the condition that $L_{k} f \in \mathbf{S}_{k, \mathfrak{t}}$, and, for all $g \in \mathbf{S}_{k, \mathfrak{t}}, \int\left(f-L_{k} f\right) g=0$, i.e., $L_{k} f$ is the $\mathbf{L}_{\mathbf{2}}$-approximation to f in $\mathbf{S}_{k, \mathbf{t}}$. We are interested in estimating the norm $\left\|L_{k}\right\|_{p}$ of L_{k} as a map on \mathbf{L}_{p}. Since

$$
\left\|L_{k}\right\|_{p}=\left\|L_{k}\right\|_{q} \quad \text { for } 1 / p+1 / q=1
$$

and $\left\|L_{k}\right\|_{2}=1$, interpolation will given a bound on $\left\|L_{k}\right\|_{p}$ in terms of $\left\|L_{k}\right\|_{\infty}=\left\|L_{k}\right\|_{1}$, as is pointed out in [2]. It therefore suffices to consider $\left\|L_{k}\right\|_{\infty}$.

Let $L_{k} f=\Sigma \alpha_{j} N_{j}$. Then $\left\|L_{k} f\right\|_{\infty} \leqslant\|\alpha\|_{\infty}$ since $N_{i} \geqslant 0$, all i, and $\Sigma_{j} N_{j} \leqslant 1$, while

$$
\sum_{j} \int N_{i} N_{j} \alpha_{j}=\int N_{i} f \leqslant\left[\left(t_{i+k}-t_{i}\right) / k\right]\|f\|_{\infty}, \quad \text { all } i,
$$

since $N_{i} \geqslant 0$ and $\int N_{i}=\left(t_{i+k}-t_{i}\right) / k$. Therefore,

$$
\begin{equation*}
\left\|L_{k}\right\|_{\infty} \leqslant\left\|G^{-1}\right\|_{\infty} \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
G:=G_{\infty}=E^{1 / 2} G_{2} E^{-1 / 2} \tag{3}
\end{equation*}
$$

where E is a diagonal matrix,

$$
\begin{equation*}
E:=\left\ulcorner k /\left(t_{k+1}-t_{1}\right), \ldots, k /\left(t_{k+n}-t_{n}\right)\right\lrcorner \tag{4}
\end{equation*}
$$

and G_{2} is the Gramian matrix for the basis $\left(N_{i}\right)$ of $\mathbf{S}_{k, t}$, i.e.

$$
\begin{equation*}
G_{2}:=\left(\int_{N_{i} N_{j}}^{2}\right)_{i, j=1}^{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{p}{N_{i}}:=\left[k /\left(t_{i+k}-t_{i}\right)\right]^{1 / p} N_{i} \tag{6}
\end{equation*}
$$

With this normalization, we are assured of the existence of a positive constant D_{k} depending only on k and not at all on \mathbf{t} or n so that

$$
\begin{equation*}
D_{k}^{-1}\|\alpha\|_{p} \leqslant\left\|\sum_{j} \alpha_{j} N_{j}^{p}\right\|_{p} \leqslant\|\alpha\|_{p}, \quad \text { all } \alpha \in \mathbf{R}^{n+k} \tag{7}
\end{equation*}
$$

(see the theorem on p. 539 of [1]). This inequality implies that

$$
\begin{equation*}
\left\|G_{2}^{-1}\right\|_{\infty} \leqslant \operatorname{const}_{k} \tag{8}
\end{equation*}
$$

for some const ${ }_{k}$ depending only on k as we will show below; and, on combining this with (2)-(4), we obtain the desired conclusion

$$
\begin{equation*}
\left\|L_{k}\right\|_{\infty} \leqslant \operatorname{const}_{k}\left(M_{t}^{(k)}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

3. A Bound for $\left\|G_{2}^{-1}\right\|_{\infty}$. With $\left(\alpha_{i j}\right)_{i, j=1}^{n}:=G_{2}^{-1}$, let $f_{i}:=\Sigma_{j} \alpha_{i j} \stackrel{2}{N}_{j}$. Then

$$
\int f_{i} N_{j}=\delta_{i j}, \quad \text { all } j
$$

hence

$$
\int \alpha_{i i} \stackrel{2}{N}_{i} f_{i}+\sum_{j \neq i} \alpha_{i j} N_{j}^{2} f_{i}=\alpha_{i i}
$$

i.e.,

$$
\begin{equation*}
\left\|f_{i}\right\|_{2}^{2}=\alpha_{i i} \tag{10}
\end{equation*}
$$

Therefore, by (7),

$$
D_{k}^{-2} \alpha_{i i}^{2} \leqslant D_{k}^{-2} \sum_{j}\left|\alpha_{i j}\right|^{2} \leqslant\left\|f_{i}\right\|^{2}=\alpha_{i i}
$$

hence, as $\alpha_{i i}=\left\|f_{i}\right\|_{2}^{2} \neq 0\left(G_{2}^{-1}\right.$ is invertible! $)$, we have $\alpha_{i i} \leqslant D_{k}^{2}$; and so, $\left\|f_{i}\right\|_{2} \leqslant D_{k}$ and

$$
\begin{equation*}
\left(\sum_{j}\left|\alpha_{i j}\right|^{2}\right)^{1 / 2} \leqslant D_{k}\left\|f_{i}\right\|_{2}=D_{k}\left(\alpha_{i i}\right)^{1 / 2} \leqslant D_{k}^{2} \tag{11}
\end{equation*}
$$

This shows that

$$
\left\|G_{2}^{-1}\right\|_{\infty}=\max _{i} \sum_{j}\left|\alpha_{i j}\right| \leqslant n^{1 / 2} \max _{i}\left(\sum_{j}\left|\alpha_{i j}\right|^{2}\right)^{1 / 2} \leqslant n^{1 / 2} D_{k}^{2}
$$

and so bounds $\left\|G_{2}^{-1}\right\|_{\infty}$ in terms of only k and n. From this, one obtains

$$
\left\|G^{-1}\right\|_{\infty} \leqslant\left(n M_{t}^{(k)}\right)^{1 / 2} D_{k}^{2}
$$

a bound in terms of the desired global mesh ratio, except that the bound goes to infinity with the number of mesh points. Note that we can express $M_{t}^{(k)}$ in terms of n and the local mesh ratio

$$
m_{\mathrm{t}}^{(k)}:=\max _{|i-j|=1}\left(t_{i+k}-t_{i}\right) /\left(t_{j+k}-t_{j}\right)
$$

hence, we even have a bound or $\left\|G^{-1}\right\|_{\infty}$ in terms of that local mesh ratio but, alas, involving also n.

In order to remove this dependence on n, we use the ideas of Douglas, Dupont and Wahlbin [2] to prove the following lemma.

Lemma 1. There exist const $_{k}$ and $\lambda_{k} \in(0,1)$ independent of n or \mathbf{t} so that, for all i and j,

$$
\left|\alpha_{i j}\right| \leqslant \operatorname{const}_{k}\left(\lambda_{k}\right)^{|i-j|}
$$

Proof. We observed earlier that the function $f_{i}=\Sigma_{j} \alpha_{i j} \stackrel{2}{N}_{j}$ is orthogonal to $\operatorname{span}\left(N_{j}\right)_{j \neq i}$. Hence, for any $m>i$,

$$
f_{i, m}:=\sum_{m \leqslant j} \alpha_{i j} \stackrel{2}{N}_{j}^{2}
$$

is orthogonal to f_{i} and, therefore, also orthogonal to $f_{i, m-k+1}$ since the latter function agrees with f_{i} on the support of $f_{i, m}$. This proves that

$$
\begin{equation*}
\left\|f_{i, m-k+1}\right\|_{2}^{2}+\left\|-f_{i, m}\right\|_{2}^{2}=\left\|f_{i, m-k+1}-f_{i, m}\right\|_{2}^{2} \tag{12}
\end{equation*}
$$

from which we conclude that

$$
\left\|\sum_{m-k<j} \alpha_{i j} \stackrel{2}{N_{j}}\right\|_{2}^{2} \leqslant\left\|\sum_{m-k<j<m} \alpha_{i j} \stackrel{2}{N_{j}}\right\|_{2}^{2}
$$

or, with the inequality (7),

$$
\begin{equation*}
\sum_{m-k<j<m}\left|\alpha_{i j}\right|^{2} \geqslant D_{k}^{-2} \sum_{m-k<j}\left|\alpha_{i j}\right|^{2}, \quad m=i+1, i+2, \ldots \tag{13}
\end{equation*}
$$

Faced with a similar inequality, Douglas, Dupont and Wahlbin [2] make use of what amounts to the following discrete Gronwall inequality:

Lemma 2. If the sequence a_{0}, a_{1}, \ldots satisfies

$$
\begin{equation*}
\left|a_{m}\right| \geqslant c \quad \sum_{m \leqslant j}\left|a_{j}\right|, \quad m=0,1,2, \ldots \tag{14}
\end{equation*}
$$

for some $c \in(0,1)$, then $\lambda:=1-c \in(0,1)$ and

$$
\begin{equation*}
\left|a_{m}\right| \leqslant\left|a_{0}\right| \lambda^{m} / c, \quad m=0,1,2, \ldots \tag{15}
\end{equation*}
$$

Proof. Let $A_{m}:=\Sigma_{m \leqslant j}\left|a_{j}\right|$. Then (14) reads

$$
A_{m}-A_{m+1} \geqslant c A_{m}, \quad \text { all } m
$$

or, $A_{m+1} \leqslant(1-c) A_{m}$, all m, therefore, with $\lambda:=1-c$,

$$
A_{m+j} \leqslant \lambda^{j} A_{m}, \quad \text { all } m, j,
$$

and so,

$$
\left|a_{m}\right|=A_{m}-A_{m+1} \leqslant A_{m} \leqslant \lambda^{m} A_{0} \leqslant\left|a_{0}\right| \lambda^{m} / c \text {. Q.E.D. }
$$

In order to apply this lemma to (12), we pick $m_{0}>i$ and let

$$
J_{m}:=\left\{j \in \mathbf{Z} \mid m_{0}+(k-1)(m-1) \leqslant j<m_{0}+(k-1) m\right\}, \quad m=0,1, \ldots
$$

Then, with

$$
a_{m}:=\sum_{j \in J_{m}}\left|\alpha_{i j}\right|^{2}, \quad \text { all } m,
$$

we obtain from (12) that

$$
a_{m} \geqslant D_{k}^{-2} \quad \sum_{m \leqslant j} a_{j}, \quad m=0,1,2, \ldots
$$

hence, from the lemma,

$$
\max _{j \in J_{m}}\left|\alpha_{i j}\right| \leqslant a_{m}^{1 / 2} \leqslant D_{k}\left(1-D_{k}^{-2}\right)^{m / 2} a_{0}^{1 / 2}
$$

while, by (11),

$$
a_{0}^{1 / 2} \leqslant\left(\sum_{j}\left|\alpha_{i j}\right|^{2}\right)^{1 / 2} \leqslant D_{k}^{2}
$$

This proves the asserted exponential decay of $\left|\alpha_{i j}\right|$ for $j>i$; but G_{2} is symmetric. Q.E.D.

It follows at once that

$$
\begin{equation*}
\left\|G_{2}^{-1}\right\|_{\infty} \leqslant \text { const }_{k} 2 /\left(1-\lambda_{k}\right) \tag{16}
\end{equation*}
$$

In view of the discussion at the end of Section 2, we have therefore proved the following theorem.

Theorem 1. There exists a constant c depending only on k so that the norm $\left\|L_{k}\right\|_{\infty}$ of \mathbf{L}_{2}-approximation by splines of order k with knot sequence \mathbf{t}, as a map on \mathbf{L}_{∞}, satisfies

$$
\left\|L_{k}\right\|_{\infty} \leqslant c\left(M_{\mathfrak{t}}^{(k)}\right)^{1 / 2}
$$

with the global mesh ratio $M_{\mathfrak{t}}^{(k)}$ given by

$$
M_{\mathfrak{t}}^{(k)}:=\max _{i, j}\left(t_{i+k}-t_{i}\right) /\left(t_{j+k}-t_{j}\right)
$$

There seems to be little hope that this argument would even support a bound in terms of $m_{\mathfrak{t}}^{(k)}$, let alone a bound independent of the mesh \mathbf{t}.
4. A Mesh Independent Bound for \mathbf{L}_{2}-Approximation by C^{0}-Piecewise Polynomials. Pick $k>1$. Let $\xi=\left(\xi_{i}\right)_{1}^{r}$ in (a, b) with $a=: \xi_{0}<\cdots<\xi_{r+1}:=b$, and let $P f$ be the \mathbf{L}_{2}-approximation to f by elements of $\mathbf{P}_{k, \xi} \cap C^{0}:=\{f \in C[a, b] \mid$ $\left.\left.f\right|_{\left(\xi_{i}, \xi_{i+1}\right)} \in \mathbf{P}_{k}\right\}$. Todd Dupont [3] has shown some time ago that P can be bounded as a map on \mathbf{L}_{∞} independently of ξ by constructing a basis for ran P for which a certain matrix related to the Gramian is strictly diagonally dominant. We take the occasion to give a proof in terms of B-splines.

If $\mathbf{t}=\left(t_{i}\right)_{1}^{n+k}$ is the nondecreasing sequence which contains a and b exactly k times and each of ξ_{1}, \ldots, ξ_{r} exactly $k-1$ times (and nothing else), then

$$
\mathbf{P}_{k, \xi} \cap C^{0}=\mathbf{s}_{k, t}
$$

hence then $P=L_{k}$ introduced in Section 2 , therefore, $\|P\| \leqslant\left\|G^{-1}\right\|$ with G given by (3)-(6) in terms of t as determined from ξ.

Theorem 2. Let $\hat{G}:=\left(k \int_{0}^{1} \hat{N}_{i} \hat{N}_{j}\right)_{i, j=1}^{k}$ be the matrix G in the special case $r=0,[a, b]=[0,1]$. Then, for all $\xi,\left\|G^{-1}\right\|_{\infty}=\left\|\hat{G}^{-1}\right\|_{\infty}$. In particular, $\|P\| \leqslant$ $\left\|\hat{G}^{-1}\right\|_{\infty}$ for all ξ. Hence (T. Dupont) $\sup _{\xi}\|P\|<\infty$.

Proof. Let $\xi_{-1}=a, \xi_{r+2}=b$. Then, for $m=0, \ldots, r+1, N_{m(k-1)+1}$ has its support on the two intervals $\left(\xi_{m-1}, \xi_{m+1}\right)$ of ξ. All other N_{i} have their support in just one interval. Correspondingly, the matrix G is almost block diagonal, with $r+1 k \times k$ blocks overlapping in just one row and column. For $k=4$ (the cubic case) and $r=2$ this looks like

$$
\begin{aligned}
& x \quad x \quad x \quad x \\
& x \quad x \quad x \quad x \\
& x \text { X } x \\
& x \quad x \quad x \quad x \quad x \quad x \quad x \\
& \mathrm{X} \times \mathrm{X} \mathrm{X} \\
& x \text { X } x \\
& \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \\
& x \quad x \quad x \quad x \\
& x \mathrm{x} x \mathrm{x} \\
& x \quad x \quad x \quad x
\end{aligned}
$$

Since the linear change of the independent variable taking $\left[\xi_{m}, \xi_{m+1}\right]$ to $[0,1]$ carries

$$
N_{m(k-1)+i} \text { on }\left[\xi_{m}, \xi_{m+1}\right] \text { to } \hat{N}_{i} \text { on }[0,1], \quad i=1, \ldots, k
$$

we have
(17) $G_{m(k-1)+i, m(k-1)+j}=\left\{\begin{array}{l}\left(\Delta \xi_{m} /\left(\xi_{m+1}-\xi_{m-1}\right)\right) \hat{G}_{1 j}, i=1 \\ \hat{G}_{i j}, i=2, \ldots, k-1 \\ \left(\Delta \xi_{m} /\left(\xi_{m+2}-\xi_{m}\right)\right) \hat{G}_{k j}, i=k\end{array}\right\}, j=1, \ldots, k$, for $m=0, \ldots, r$. This says that each of the $r+1$ blocks of G is essentially equal to \hat{G}.
G is totally positive by [1]. Its inverse is therefore a checkerboard matrix, hence (see [1, p. 541])
(18) if y is such that $\sum_{j} G_{i j}(-)^{i+j} y_{j}=1$, all i, then $\left\|G^{-1}\right\|_{\infty}=\|\mathrm{y}\|_{\infty}$.

But such a \mathbf{y} is easily constructed. Take $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ so that

$$
\begin{equation*}
\sum_{j} \hat{G}_{i j}(-)^{i+j_{x_{j}}}=1, \quad \text { all } i \tag{19}
\end{equation*}
$$

and extend \mathbf{x} to a $(k-1)$-periodic function $\mathbf{y}=\left(y_{i}\right)_{1}^{n}$ on all of $(1, \ldots, n)$. This is possible since $x_{k}=x_{1}$ by symmetry. Then, for $i=m(k-1)+I$, we have from (17) and (19) that

$$
\sum_{j} G_{i j}(-1)^{i+j_{y_{j}}}=\sum_{j=1}^{k} \hat{G}_{I j}(-)^{I+j} x_{j}=1, \quad I=2, \ldots, k-1 ; m=0, \ldots, r
$$

and also

$$
\begin{aligned}
\sum_{j} G_{i j}(-)^{i+j} y_{j}= & \left(\Delta \xi_{m-1} /\left(\xi_{m+1}-\xi_{m-1}\right)\right) \sum_{j} \hat{G}_{k j}(-)^{k+j} x_{j} \\
& +\left(\Delta \xi_{m} /\left(\xi_{m+1}-\xi_{m-1}\right)\right) \sum_{j} \hat{G}_{1 j}(-)^{1+j} x_{j}=1 \\
& \quad \text { for } I=1 ; m=0, \ldots, r+1 .
\end{aligned}
$$

This proves with (18) that

$$
\left\|G^{-1}\right\|_{\infty}=\|y\|_{\infty}=\|\mathrm{x}\|_{\infty}=\left\|\hat{G}^{-1}\right\|_{\infty} \text {. Q.E.D. }
$$

Mathematics Research Center
University of Wisconsin
Madison, Wisconsin 53706

1. C. de BOOR, 'Bounding the error in spline interpolation," SIAM Rev., v. 16, 1974, pp. 531-544. MR 50 \# 13976.
2. J. DOUGLAS, JR., T. DUPONT \& L. WAHLBIN, "Optimal L_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems," Math. Comp., v. 29, 1975, pp. 475-483. MR 51 \# 7298.
3. T. DUPONT, Private communication.
